Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS One ; 17(1): e0256194, 2022.
Article in English | MEDLINE | ID: covidwho-1636427

ABSTRACT

OBJECTIVES: COVID-19 and Non-Covid-19 (NC) Pneumonia encountered high CT imaging overlaps during pandemic. The study aims to evaluate the effectiveness of image-based quantitative CT features in discriminating COVID-19 from NC Pneumonia. MATERIALS AND METHODS: 145 patients with highly suspected COVID-19 were retrospectively enrolled from four centers in Sichuan Province during January 23 to March 23, 2020. 88 cases were confirmed as COVID-19, and 57 patients were NC. The dataset was randomly divided by 3:2 into training and testing sets. The quantitative CT radiomics features were extracted and screened sequentially by correlation analysis, Mann-Whitney U test, the least absolute shrinkage and selection operator (LASSO) logistic regression (LR) and backward stepwise LR with minimum AIC methods. The selected features were used to construct the LR model for differentiating COVID-19 from NC. Meanwhile, the differentiation performance of traditional quantitative CT features such as lesion volume ratio, ground glass opacity (GGO) or consolidation volume ratio were also considered and compared with Radiomics-based method. The receiver operating characteristic curve (ROC) analysis were conducted to evaluate the predicting performance. RESULTS: Compared with traditional CT quantitative features, radiomics features performed best with the highest Area Under Curve (AUC), sensitivity, specificity and accuracy in the training (0.994, 0.942, 1.0 and 0.965) and testing sets (0.977, 0.944, 0.870, 0.915) (Delong test, P < 0.001). Among CT volume-ratio based models using lesion or GGO component ratio, the model combining CT lesion score and component ratio performed better than others, with the AUC, sensitivity, specificity and accuracy of 0.84, 0.692, 0.853, 0.756 in the training set and 0.779, 0.667, 0.826, 0.729 in the testing set. The significant difference of the most selected wavelet transformed radiomics features between COVID-19 and NC might well reflect the CT signs. CONCLUSIONS: The differentiation between COVID-19 and NC could be well improved by using radiomics features, compared with traditional CT quantitative values.


Subject(s)
COVID-19 , Humans , Pandemics , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
2.
BMC Med Imaging ; 21(1): 31, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1088584

ABSTRACT

BACKGROUND: In this COVID-19 pandemic, the differential diagnosis of viral pneumonia is still challenging. We aimed to assess the classification performance of computed tomography (CT)-based CT signs and radiomics features for discriminating COVID-19 and influenza pneumonia. METHODS: A total of 154 patients with confirmed viral pneumonia (COVID-19: 89 cases, influenza pneumonia: 65 cases) were collected retrospectively in this study. Pneumonia signs and radiomics features were extracted from the initial unenhanced chest CT images to build independent and combined models. The predictive performance of the radiomics model, CT sign model, the combined model was constructed based on the whole dataset and internally invalidated by using 1000-times bootstrap. Diagnostic performance of the models was assessed via receiver operating characteristic (ROC) analysis. RESULTS: The combined models consisted of 4 significant CT signs and 7 selected features and demonstrated better discrimination performance between COVID-19 and influenza pneumonia than the single radiomics model. For the radiomics model, the area under the ROC curve (AUC) was 0.888 (sensitivity, 86.5%; specificity, 78.4%; accuracy, 83.1%), and the AUC was 0.906 (sensitivity, 86.5%; specificity, 81.5%; accuracy, 84.4%) in the CT signs model. After combining CT signs and radiomics features, AUC of the combined model was 0.959 (sensitivity, 89.9%; specificity, 90.7%; accuracy, 90.3%). CONCLUSIONS: CT-based radiomics combined with signs might be a potential method for distinguishing COVID-19 and influenza pneumonia with satisfactory performance.


Subject(s)
COVID-19/diagnostic imaging , Influenza, Human/diagnostic imaging , Pneumonia, Viral/etiology , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Adult , Area Under Curve , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Models, Theoretical , Pneumonia, Viral/diagnostic imaging , Predictive Value of Tests , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL